Similar Jobs
Artificial Intelligence • Hardware • Information Technology • Security • Software • Cybersecurity • Big Data Analytics
As an AI/ML Engineer Co-Op, you will assist in developing AI tools, work with data engineers, understand data patterns, and ensure tools align with business needs.
Top Skills:
DjangoFlaskLlm PromptingPandasPythonSeabornSnowflakeSQL
Big Data • Fintech • Mobile • Payments • Financial Services
The Senior Staff Machine Learning Engineer will lead the design and scaling of advanced ML systems, mentor engineers, and define technical strategy across Affirm.
Top Skills:
KubeflowMlflowPythonPyTorchRaySparkXgboost
Artificial Intelligence • Cloud • Computer Vision • Hardware • Internet of Things • Software
As a Staff Machine Learning Engineer, you'll lead AI initiatives using large-scale data, optimize ML models for edge devices, and collaborate with cross-functional teams.
Top Skills:
C++PythonRayRustSpark
At Numrah, we build intelligent, modern applications that combine cutting-edge engineering with practical machine learning. We're looking for a Machine Learning Engineer who is deeply grounded in ML theory and excited to design, train, fine-tune, and deploy Large Language Models (LLMs) and other ML systems in real-world production environments.
You’ll work closely with backend and product individuals/teams to deliver smart, scalable features—from rapid experimentation to full-scale deployment. If you’re passionate about ML theory, hands-on with LLMs, and know how to ship high-impact AI features, this role is for you.
What You’ll Do
- Design and implement ML solutions from ideation to production
- Fine-tune and integrate LLMs
- Deploy and monitor LLM-powered features at scale in real-world products
- Collaborate with engineers and product teams to build intelligent, user-facing features
- Write clean, scalable code and detailed technical documentation
- Stay current with the latest in ML research, LLM capabilities, and MLOps best practices
Must-Haves
- Be an Arabic speaker
- Have at least 1 year of non-internship experience in Machine Learning.
- Strong ML and DL theory background, you don't just use things, you know how they are working under the hood.
- Experience training and fine-tuning LLMs, with practical knowledge of transformer architectures
- Solid production-level Python experience and strong software engineering fundamentals (OOP, OOD, DSA)
- Familiarity with LLM integration frameworks like HuggingFace Transformers, OpenAI, or LangChain
- Familiarity with ML data pipelines and manipulation tools (e.g., Pandas, NumPy)
- Strong research, writing, and documentation skills
- Collaborative mindset and ability to communicate technical ideas clearly
Nice-to-Have
- Experience deploying LLM-based features to production
- Knowledge of parameter-efficient fine-tuning (LoRA, QLoRA, PEFT)
- Familiarity with RAG pipelines and vector databases (e.g., Pinecone, Weaviate)
- Understanding of model serving and inference optimization (quantization, batching)
- Exposure to MLOps practices (monitoring, versioning, CI/CD for ML)
- Experience with RESTful APIs, Docker, and cloud platforms (GCP, AWS, or Azure)
- Interest in NLP applications, smart assistants, or chatbot systems
What you need to know about the Calgary Tech Scene
Employees can spend up to one-third of their life at work, so choosing the right company is crucial, not just for the job itself but for the company culture as well. While startups often offer dynamic culture and growth opportunities, large corporations provide benefits like career development and networking, especially appealing to recent graduates. Fortunately, Calgary stands out as a hub for both, recognized as one of Startup Genome's Top 100 Emerging Ecosystems, while also playing host to a number of multinational enterprises. In Calgary, job seekers can find a wide range of opportunities.


